HEAT TRANSFER ANALYSIS OF AXI-SYMMETRIC PLATE WITH CONVECTIVE AND RADIATIVE BC

Property	Value
Geometry	Inner radius
	Outer radius
	Height
Mesh	2D Axisymmetric
Mesh size	5 X 1
Thermal conductivity (k _x)	1 <i>W</i> / <i>K</i>
Convective boundary condition	H=30 W/m ² K, T_{α} =373K
Radiative boundary condition	ε=0.9, Τ _α =300 <i>K</i>

PROCEDURE

1 Create key points at (3/0/0) and (3.05/0.1/0)

Commands : POINT, ADD

Menu : Geometry \rightarrow Key point \rightarrow Create \rightarrow Add

Parameters : (To be filled by the user)

Point Data	3/0/0

Point Data	3.05/0.1/0
------------	------------

After filling the parameters click *apply* button. If apply button is not active then you press *ctrl+enter* key.

At the end of the above operations, your screen looks like this.

2 Create quadrilateral surface on two diagonal points

Menu	:	Geometry \rightarrow Surface \rightarrow Create \rightarrow Rect2P
Parameters	:	(To be filled by the users)

Corners	Use mouse to pick the points.
	P1/P2

At the end of the above operations, your screen looks like this.

F

3 Meshing using quadrilateral elements

Menu :	$Mesh \rightarrow MeshGen$	→ QUAD
--------	----------------------------	--------

Command : MESH,QUAD

:

Parameters

Surface	Use mouse to select the surface
Element size	0.5
Method	Mapped
Туре	4 node
Divisions	S1(D1)[0]*5/S1(D3)[0]*5
Bias	

Note:

Divisions along each edge can be varied by selecting the corresponding edges and right/left clicking the mouse point to adjust the subdivisions. Eg: S1(D1):5 shows 5 sub divisions along edge1.

At the end of the above operations, your screen looks like this.

4 Convert the QUAD4 elements to QUAD8 element

Command	:	ELEMENT, CONV	ERT
Menu	:	$Mesh \rightarrow Element \rightarrow$	→ Modify→ Convert
Parameters	:		
		Elements	All
		Convert to	Ouadratic

At the end of the above operations, your screen should look like this.

5 Change the element type

Command : ELEMENT, TYPE

Menu : Mesh \rightarrow Element \rightarrow Modify \rightarrow Type

Parameters

Elements	All
Element Type	Axisymmetric

6 Set the analysis type

pe

Command : ANTYPE, ADD

:

Analysis Type HT Steady State

7 Specify heat transfer boundary conditions

1) Convective boundary condition

oad/BC \rightarrow Thermal \rightarrow Convection
oad/BC \rightarrow Thermal \rightarrow Convection

Command : HTCONVEC, ADD

Parameters :

Entity Type	Edge
Entity Edge	Select edge4 of first element five / (1D4)
Film Coefficient	30
Ambient Temperature	373 <i>K</i>

At the end of the above operations, your screen should look like this.

2) Radiative boundary condition

:

Menu : Load/BC \rightarrow Thermal \rightarrow Radiation \rightarrow Simple

Command : HTRADSIMPLE, ADD

Parameters

Entity Type	Edge
Entity Edge	Select right side edge
Emissivity	0.9
Temperature of surroundings	300 <i>K</i>
Steffan Boltzmann Constant	5.6703e-8
Label	

At the end of the above operations, your screen should look like this.

Eile Edit View Geometr	y Mesh Load/B	C Property Analysis Post Windows <u>H</u> elp Role of Ford interstance (A) For Ford Analysis (A)	_ 8
Model Main Show Log Colo I [®] Geometry B [®] Model Data	ur Settings	FEAST 2023.00 VSSC / ISRO	
HTRADSIMPLE, AD	D		
Entity Type	Edge		
Entity Edge	5(D2)[0]		
Emissivity	0.9		
Temperature of Surroundings	300		
Stefan Boltzman Constant	5.6704e-08		
Label			
		x x	
Cancel	<u></u>	S> HTCONVEC, ADD HTCONVEC, ADD - Executed ! SS HTPEDDSTMPIE: ADD	
		HTPADSIMPLE ADD - Executed 1	

8 Specify material properties

Menu : Property \rightarrow Material \rightarrow Thermal \rightarrow Isotropic

Command : MATERIAL, HTISOTROPIC

Parameters :

Elements	All
Thermal	1
Conductivity	

9 Save the project

Menu : File \rightarrow Save

10 Activate solver

Click Run Solver button

After the solution is completed the message "Finished successfully" appears in the message box.

11 Perform post processing

a) Contour

	enu :	Post –	➤ Contour
--	-------	--------	-----------

Command : POST, CONTOUR

Item	Temperature
Restrict To	
Contour Type	Band

Parameters : No. of contours 9 Decimal Places 2

At the end of the above operations, your screen should look like this.

